Worst-Case Evaluation of Flexible Solutions in Disjunctive Scheduling Problems
نویسندگان
چکیده
In this paper, we consider the problem of evaluating the worst case performance of flexible solutions in non-preemptive disjunctive scheduling. A flexible solution represents a set of semi-active schedules and is characterized by a partial order on each machine. A flexible solution can be used on-line to absorb the impact of some data disturbances related for example to job arrival, tool availability and machine breakdowns. Providing a flexible solution is useful in practice only if it can be assorted with an evaluation of the complete schedules that can be obtained by extension. For this purpose, we suggest to use only the best case and the worst case performance. The best case performance is an ideal performance that can be achieved only if the on-line conditions allow to implement the best schedule among the set of schedules characterized by the flexible solution. In contrast, the worst case performance indicates how poorly the flexible solution may perform. These performances can be obtained by solving corresponding minimization and maximization problems. We focus here on maximization problems when a regular minmax objective function is considered. In this case, the worse objective function value can be determined by computing the worse completion time of each operation separately. We show that this problem can be solved by finding an elementary longest path in the disjunctive graph representing the problem with additional constraints. In the special case of the flow-shop problem with release dates and additional precedence constraints, we give a polynomial algorithm that determines the worst case performance of a flexible solution.
منابع مشابه
Flexible solutions in disjunctive scheduling: General formulation and study of the flow-shop case
We consider the context of decision support for schedule modification after the computation off-line of a predictive optimal (or near optimal) schedule. The purpose of this work is to provide the decision-maker a characterization of possible modifications of the predictive schedule while preserving optimality. In the context of machine scheduling, the anticipated modifications are changes in th...
متن کاملA Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations
In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...
متن کاملSolving Flexible Job Shop Scheduling with Multi Objective Approach
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...
متن کاملA HYBRID GENETIC ALGORITHM FOR A BI-OBJECTIVE SCHEDULING PROBLEM IN A FLEXIBLE MANUFACTURING CELL
This paper considers a bi-objective scheduling problem in a flexible manufacturing cell (FMC) which minimizes the maximum completion time (i.e., makespan) and maximum tardiness simultaneously. A new mathematical model is considered to reflect all aspect of the manufacturing cell. This type of scheduling problem is known to be NP-hard. To cope with the complexity of such a hard problem, a genet...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007